PROPIEDADES DE LAS SECCIONES

5.1 GENERALIDADES

Además de la resistencia de la madera, caracterizada por los esfuerzos unitarios admisibles, el comportamiento de un miembro estructural también depende de las dimensiones y la forma de su sección transversal. Estos dos factores se consideran dentro de las *propiedades* de la sección; son independientes del material del cual está hecho el miembro. En este capítulo se estudia la definición y naturaleza de algunas de estas propiedades como fundamento para su aplicación posterior en el diseño de miembros estructurales.

5.2 CENTROIDES

El centro de gravedad de un sólido es un punto imaginario en el cual se considera que todo su peso está concentrado o el punto a través del cual pasa la resultante de su peso. El punto en un área plana que corresponde al centro de gravedad de una placa muy delgada que tiene las mismas área y forma se conoce como el centroide del área.

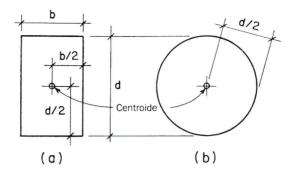


Figura 5.1

Cuando una viga se flexiona debido a una carga aplicada, las fibras por encima de un cierto plano en la viga trabajan en compresión y aquéllas por abajo de este plano, a tensión. Este plano se conoce como la *superficie neutra*. La intersección de la superficie neutra y la sección transversal de la viga se conoce como el *eje neutro*. El eje neutro pasa por el centroide de la sección; por ello es importante que se conozca la posición del centroide.

La posición del centroide en secciones simétricas se determina fácilmente. Si la sección posee un eje de simetría, obviamente el centroide estará sobre ese eje; si hay dos ejes de simetría, el centroide se ubicará en su punto de intersección; por ejemplo, la sección transversal de la viga rectangular que se muestra en la figura 5.1a tiene su centroide en su centro geométrico, el punto de intersección de las diagonales. El centroide de una sección transversal circular se encuentra en su centro (figura 5.1b).

Con respecto a la notación dimensional, en general la letra b representa el ancho de la cara del miembro sobre el que se aplica la carga. La letra d representa el peralte o la altura de la cara de la viga paralela a la dirección de la línea de acción de la carga. Algunas veces, el peralte se representa con la letra h, pero se sigue la práctica más general del diseño estructural en la que d denota el peralte de la sección transversal de una viga.

5.3 MOMENTO DE INERCIA

En la figura 5.2a se ilustra una sección rectangular de ancho b y peralte d con el eje horizontal X-X que pasa por su centroide a una distancia c = d/2 a partir de la cara superior. En la sección, a representa un área infinitamente pequeña a una distancia z del eje X-X. Si se multiplica esta área infinitesimal por el cuadrado de su distancia al eje, se obtiene la cantidad $(a \times z^2)$. El área completa de la sección está constituida por un número infinito de estas pequeñas áreas elementales a diferentes distancias por arriba y por abajo del eje X-X. Si se usa la letra griega Σ para indicar la suma de un número infinito, se escribe Σaz^2 , lo

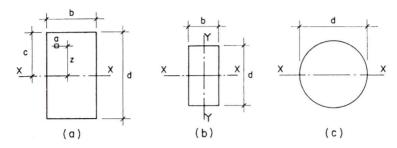


Figura 5.2

que significa la suma de todas las áreas infinitamente pequeñas (de las que está compuesta la sección), multiplicadas por el cuadrado de sus distancias del eje X-X. Esta cantidad se conoce como *momento de inercia* de la sección y se denota por la letra I. Más específicamente, $I_{X - X} = \Sigma az^2$ es el momento de inercia con respecto al eje marcado como X-X.

Entonces, el momento de inercia se define como la suma de los productos que se obtienen al multiplicar todas las áreas infinitamente pequeñas por el cuadrado de sus distancias a un eje. Las dimensiones lineales de las secciones transversales de los miembros estructurales se dan en pulgadas y, debido a que el momento de inercia es un área multiplicada por el cuadrado de una distancia, se expresa en pulgadas a la cuarta potencia, es decir, pulg⁴. La deducción de fórmulas para calcular los momentos de inercia de diferentes formas geométricas se logra muy fácilmente mediante el cálculo. La obtención de estas fórmulas está fuera del alcance de este libro, pero aquí se ilustra la aplicación de dos de ellas.

Rectángulos

Considérese el rectángulo mostrado en la figura 5.2b. Su ancho es b y su peralte es d. Los dos ejes principales son X–X y Y–Y, y ambos pasan por el centroide de la sección. Se puede demostrar que el momento de inercia de una sección rectangular con respecto a un eje que pasa por el centroide y es paralelo a la base es $I_{X-X} = bd^3/12$. Con respecto al eje vertical, la expresión sería $I_{Y-Y} = db^3/12$. Sin embargo, en el diseño de vigas y tablones de madera, se acostumbra trabajar solamente con I_{X-X} y considerar a b como la cara superior (sometida a carga) en la fórmula.

Ejemplo. Calcule el momento de inercia de la sección transversal de una viga de 6×12 (dimensiones efectivas de 5.5×11.5 pulgadas [140×290 mm]) con respecto a un eje horizontal que pasa por el centroide y es paralelo al lado más corto

Solución: con respecto a la figura 5.2b, el ancho b = 5.5 pulgadas [140 mm] y el peralte d = 11.5 pulgadas [290 mm]. Entonces,

TABLA 5.1 Propiedades de la madera estructural con dimensiones efectivas estándar (S4S)

Dimensiones nominales b (pulgadas) d	Dimensiones estándares efectivas (S4S) b (pulgadas) d	Área de la sección A	Momento de inercia I	Módulo de la sección S	Peso aproxi- mado*
2 × 3	1-1/2 × 2-1/2	3.750	1.953	1.563	0.911
2 × 4	$1-1/2 \times 3-1/2$	5.250	5.359	3.063	1.276
2 × 5	$1-1/2 \times 4-1/2$	6.750	11.391	5.063	1.641
2×6	$1-1/2 \times 4-1/2$	8.250	20.797	7.563	2.005
2×8	$1-1/2 \times 7-1/4$	10.875	47.635	13.141	2.643
2×10	$1-1/2 \times 9-1/4$	13.875	98.932	21.391	3.372
2 × 12	$1-1/2 \times 11-1/4$	16.875	177.979	31.641	4.102
2 × 14	$1-1/2 \times 13-1/4$	19.875	290.775	43.891	4.831
3 × 1	2-1/2 × 3/4	1.875	0.088	0.234	0.456
3×2	$2-1/2 \times 1-1/2$	3.750	0.703	0.938	0.911
3×4	$2-1/2 \times 3-1/2$	8.750	8.932	5.104	2.127
3×5	$2-1/2 \times 4-1/2$	11.250	18.984	8.438	2.734
3×6	$2-1/2 \times 5-1/2$	13.750	34.661	12.604	3.342
3×8	$2-1/2 \times 7-1/4$	18.125	79.391	21.901	4.405
3×10	$2-1/2 \times 9-1/4$	23.125	164.886	35.651	5.621
3×12	$2-1/2 \times 11-1/4$	28.125	296.631	52.734	6.836
3×14	$2-1/2 \times 13-1/4$	33.125	484.625	73.151	8.051
3 × 16	2-1/2 × 15-1/4	38.125	738.870	96.901	9.266
4 × 1	3-1/2 × 3/4	2.625	0.123	0.328	0.638
4×2	$3-1/2 \times 1-1/2$	5.250	0.984	1.313	1.276
4×3	$3-1/2 \times 2-1/2$	8.750	4.557	3.646	2.127
4×4	$3-1/2 \times 3-1/2$	12.250	12.505	7.146	2.977
4×5	$3-1/2 \times 4-1/2$	15.750	26.578	11.813	3.828
4×6	$3-1/2 \times 5-1/2$	19.250	48.526	17.646	4.679
4×8	$3-1/2 \times 7-1/4$	25.375	111.148	30.661	6.168
4×10	$3-1/2 \times 9-1/4$	32.375	230.840	49.911	7.869
4×12	$3-1/2 \times 11-1/4$	39.375	415.283	73.828	9.570
4×14	$3-1/2 \times 13-1/4$	46.375	678.475	102.411	11.266
4 × 16	3-1/2 × 15-1/4	53.375	1034.418	135.66	12.975
5 × 2	4-1/2 × 1-1/2	6.750	1.266	1.688	1.641
5×3	$4-1/2 \times 2-1/2$	11.250	5.859	4.688	2.734
5 × 4	$4-1/2 \times 3-1/2$	15.750	16.078	9.188	3.828
5 × 5	4-1/2 × 4-1/2	20.250	34.172	15.188	4.922

^{*} Peso en libras por pie, basado en una densidad promedio de 35 lb/pie³ (560 kg/m³).

Fuente: Compilado de datos del National Design Specification for Wood Construction (Referencia 1), con permiso de los editores, National Forest Products Association.

TABLA 5.1 (Continuación)

	Dimensiones		100		
	estándares	Área	Momento	Módulo	
Dimensiones	efectivas	de la	de	de la	Peso
nominales	(S4S)	sección	inercia	sección	aproxi-
b (pulgadas) d	b (pulgadas) d	A	Ι	S	mado*
.6 × 1	5-1/2 × 3/4	4.125	0.193	0.516	1.003
6×2	$5-1/2 \times 1-1/2$	8.250	1.547	2.063	2.005
6×3	$5-1/2 \times 2-1/2$	13.750	7.161	5.729	3.342
6×4	$5-1/2 \times 3-1/2$	19.250	19.651	11.229	4.679
6 × 6	$5-1/2 \times 5-1/2$	30.250	76.255	27.729	7.352
6 × 8	$5-1/2 \times 7-1/2$	41.250	193.359	51.563	10.026
6×10	$5-1/2 \times 9-1/2$	52.250	392.963	82.729	12.700
6 × 12	$5-1/2 \times 11-1/2$	63.250	697.068	121.229	15.373
6×14	$5-1/2 \times 13-1/2$	74.250	1127.672	167.063	18.047
6 × 16	$5-1/2 \times 15-1/2$	85.250	1706.776	220.229	20.720
6 × 18	$5-1/2 \times 17-1/2$	96.250	2456.380	280.729	23.394
6 × 20	$5-1/2 \times 19-1/2$	107.250	3398.484	348.563	26.068
6 × 22	$5-1/2 \times 21-1/2$	118.250	4555.086	423.729	28.741
6 × 24	5-1/2 × 23-1/2	129.250	5948.191	506.229	31.415
8 × 1	$7-1/4 \times 3/4$	5.438	0.255	0.680	1.322
8×2	$7-1/4 \times 1-1/2$	10.875	2.039	2.719	2.643
8 × 3	$7-1/4 \times 2-1/2$	18.125	9.440	7.552	4.405
8 × 4	$7-1/4 \times 3-1/2$	25.375	25.904	14.803	6.168
8 × 6	$7-1/2 \times 5-1/2$	41.250	103.984	37.813	10.026
8 × 8	$7-1/2 \times 7-1/2$	56.250	263.672	70.313	13.672
8 × 10	$7-1/2 \times 9-1/2$	71.250	535.859	112.813	17.318
8 × 12	$7-1/2 \times 11-1/2$	86.250	950.547	165.313	20.964
8 × 14	$7-1/2 \times 13-1/2$	101.250	1537.734	227.813	24.609
8 × 16	$7 - 1/2 \times 15 - 1/2$	116.250	2327.422	300.313	28.255
8 × 18	$7-1/2 \times 17-1/2$	131.250	3349.609	382.813	31.901
8 × 20	$7 - 1/2 \times 19 - 1/2$	146.250	4634.297	475.313	35.547
8×22 8×24	$7-1/2 \times 21-1/2$ $7-1/2 \times 23-1/2$	161.250 176.250	6211.484 8111.172	577.813 690.313	39.193 42.839
10 × 1	$9-1/4 \times 3/4$	6.938	0.325	0.867	1.686
10×2 10×3	$9-1/4 \times 1-1/2$ $9-1/4 \times 2-1/2$	13.875 23.125	2.602	3.469	3.372
10×3 10×4			12.044	9.635 18.885	5.621
10×4 10×6	$9-1/4 \times 3-1/2$ $9-1/2 \times 5-1/2$	32.375 52.250	33.049 131.714	47.896	7.869 12.700
10×8	$9-1/2 \times 3-1/2$ $9-1/2 \times 7-1/2$	71.250	333.984	89.063	17.318
10×8 10×10	$9-1/2 \times 7-1/2$ $9-1/2 \times 9-1/2$	90.250	678.755	142.896	21.936
10×10 10×12	$9-1/2 \times 9-1/2$ $9-1/2 \times 11-1/2$	109.250	1204.026	209.396	26.554
10×12 10×14	$9-1/2 \times 11-1/2$ $9-1/2 \times 13-1/2$	128.250	1947.797	288.563	31.172
10×14 10×16	$9-1/2 \times 15-1/2$ $9-1/2 \times 15-1/2$	147.250	2948.068	380.396	35.790
10×18	$9-1/2 \times 13-1/2$ $9-1/2 \times 17-1/2$	166.250	4242.836	484.896	40.408
10×18 10×20	$9-1/2 \times 17-1/2$ $9-1/2 \times 19-1/2$	185.250	5870.109	602.063	45.026
10×20 10×22	$9-1/2 \times 19-1/2$ $9-1/2 \times 21-1/2$	204.250	7867.879	731.896	49.644
10×22 10×24	$9-1/2 \times 23-1/2$ $9-1/2 \times 23-1/2$	223.250	10274.148	874.396	54.262
	2-112 X 23-112		10274.140	074.370	54.202

TABLA 5.1 (Continuación)

	Dimensiones				
	estándares	Área	Momento	Módulo	
Dimensiones	efectivas	de la	de	de la	Peso
nominales	(S4S)	sección	inercia	sección	aproxi-
b (pulgadas) d	b (pulgadas) d	A	I	S	mado*
12 × 1	11-1/4 × 3/4	8.438	0.396	1.055	2.051
12×2	$11-1/4 \times 1-1/2$	16.875	3.164	4.219	4.102
12×3	$11-1/4 \times 2-1/2$	28.125	14.648	11.719	6.836
12×4	$11-1/4 \times 3-1/2$	39.375	40.195	22.969	9.570
12×6	$11-1/2 \times 5-1/2$	63.250	159.443	57.979	15.373
12×8	$11-1/2 \times 7-1/2$	86.250	404.297	107.813	20.964
12×10	$11-1/2 \times 9-1/2$	109.250	821.651	172.979	26.554
12×12	$11-1/2 \times 11-1/2$	132.250	1457.505	253.479	32.144
12×14	$11-1/2 \times 13-1/2$	155.250	2357.859	349.313	37.734
12×16	$11-1/2 \times 15-1/2$	178.250	3568.713	460.479	43.325
12×18	$11-1/2 \times 17-1/2$	201.250	5136.066	586.979	48.915
12×20	$11-1/2 \times 19-1/2$	224.250	7105.922	728.813	54.505
12×22	$11-1/2 \times 21-1/2$	247.250	9524.273	885.979	60.095
12×24	$11-1/2 \times 23-1/2$	270.250	12437.129	1058.479	65.686
14 × 2	13-1/4 × 1-1/2	19.875	3.727	4.969	4.831
14 × 3	$13-1/4 \times 2-1/2$	33.125	17.253	13.802	8.051
14 × 4	$13-1/4 \times 3-1/2$	46.375	47.34	27.052	11.266
14 × 6	$13-1/2 \times 5-1/2$	74.250	187.172	68.063	18.047
14 × 8	$13-1/2 \times 7-1/2$	101.250	474.609	126.563	24.609
14 × 10	$13-1/2 \times 9-1/2$	128.250	964.547	203.063	31.172
14 × 12	$13-1/2 \times 11-1/2$	155.250	1710.984	297.563	37.734
14 × 14	$13-1/2 \times 13-1/2$	182.250	2767.922	410.063	44.297
14 × 16	$13-1/2 \times 15-1/2$	209.250	4189.359	540.563	50.859
14 × 18	$13-1/2 \times 17-1/2$	236.250	6029.297	689.063	57.422
14×20	$13-1/2 \times 19-1/2$	263.250	8341.734	855.563	63.984
14 × 22	$13-1/2 \times 21-1/2$	290.250	11180.672	1040.063	70.547
14 × 24	$13-1/2 \times 23-1/2$	317.250	14600.109	1242.563	77.109
16 × 2	15 1/4 × 2 1/2	20 125	10 957	15 005	0.267
16×3 16×4	$15-1/4 \times 2-1/2$	38.125	19.857 54.487	15.885	9.267
	$15-1/4 \times 3-1/2$	53.375		31.135	12.975
16 × 6	$15-1/2 \times 5-1/2$	85.250	214.901	78.146	20.720
16 × 8	$15-1/2 \times 7-1/2$	116.250	544.922	145.313	28.255
16 × 10	$15-1/2 \times 9-1/2$	147.250	1107.443	233.146	35.790
16 × 12	$15-1/2 \times 11-1/2$	178.250	1964.463	341.646	43.325
16 × 14	$15-1/2 \times 13-1/2$	209.250	3177.984	470.813	50.859
16 × 16	$15-1/2 \times 15-1/2$	240.250	4810.004	620.646	58.394
16 × 18	$15-1/2 \times 17-1/2$	271.250	6922.523	791.146	65.929
16 × 20	$15-1/2 \times 19-1/2$	302.250	9577.547	984.313	73.464
16 × 22	$15-1/2 \times 21-1/2$	333.250	12837.066	1194.146	80.998
16 × 24	15-1/2 × 23-1/2	364.250	16763.086	1426.646	88.533

TABLA 5.1 (Continuación)

	Dimensiones	,			
	estándares	Área	Momento	Módulo	
Dimensiones nominales	efectivas (S4S)	de la	de	de la	Peso
b (pulgadas) d	b (pulgadas) d	sección A	inercia I	sección S	aproxi-
b (puigadas) a	o (puigadas) u			ა	mado*
18×6	$17-1/2 \times 5-1/2$	96.250	242.630	88.229	23.394
18×8	$17-1/2 \times 7-1/2$	131.250	615.234	164.063	31.901
18×10	$17-1/2 \times 9-1/2$	166.250	1250.338	263.229	40.408
18×12	$17-1/2 \times 11-1/2$	201.250	2217.943	385.729	48.915
18×14	$17-1/2 \times 13-1/2$	236.250	3588.047	531.563	57.422
18×16	$17-1/2 \times 15-1/2$	271.250	5430.648	700.729	65.929
18×18	$17-1/2 \times 17-1/2$	306.250	7815.754	893.229	74.436
18×20	$17-1/2 \times 19-1/2$	341.250	10813.359	1109.063	82.943
18×22	$17-1/2 \times 21-1/2$	376.250	14493.461	1348.229	91.450
18×24	$17-1/2 \times 23-1/2$	411.250	18926.066	1610.729	99.957
20 × 6	19-1/2 × 5-1/2	107.250	270.359	98.313	26.068
20 × 8	$19-1/2 \times 7-1/2$	146.250	685.547	182.813	35.547
20×10	$19-1/2 \times 9-1/2$	185.250	1393.234	293.313	45.026
20 × 12	$19-1/2 \times 11-1/2$	224.250	2471.422	429.813	54.505
20 × 14	$19-1/2 \times 13-1/2$	263.250	3998.109	592.313	63.984
20 × 16	$19-1/2 \times 15-1/2$	302.250	6051.297	780.813	73.464
20 × 18	$19-1/2 \times 17-1/2$	341.250	8708.984	995.313	82.943
20×20	$19-1/2 \times 19-1/2$	380.250	12049.172	1235.813	92.422
20×22	$19-1/2 \times 21-1/2$	419.250	16149.859	1502.313	101.901
20×24	$19-1/2 \times 23-1/2$	458.250	21089.047	1794.813	111.380
22 × 6	21-1/2 × 5-1/2	118.250	298.088	108.396	28.741
22 × 8	$21-1/2 \times 7-1/2$	161.250	755.859	201.563	39.193
22 × 10	$21-1/2 \times 9-1/2$	204.250	1536.130	323.396	49.644
22 × 12	$21-1/2 \times 11-1/2$	247.250	2724.901	473.896	60.095
22 × 14	$21-1/2 \times 13-1/2$	290.250	4408.172	653.063	70.547
22 × 16	$21-1/2 \times 15-1/2$	333.250	6671.941	860.896	80.998
22 × 18	$21-1/2 \times 17-1/2$	376.250	9602.211	1097.396	91.450
22×20	$21-1/2 \times 19-1/2$	419.250	13284.984	1362.563	101.901
22×22	$21-1/2 \times 21-1/2$	462.250	17806.254	1656.396	112.352
22 × 24	$21-1/2 \times 23-1/2$	505.250	23252.023	1978.896	122.804
24 × 6	23-1/2 × 5-1/2	129.250	325.818	118.479	31.415
24 × 8	$23-1/2 \times 7-1/2$	176.250	826.172	220.313	42.839
24 × 10	$23-1/2 \times 9-1/2$	223.250	1679.026	353.479	54.262
24 × 12	$23-1/2 \times 11-1/2$	270.250	2978.380	517.979	65.686
24 × 14	$23-1/2 \times 13-1/2$	317.250	4818.234	713.813	77.109
24 × 16	$23-1/2 \times 15-1/2$	364.250	7292.586	940.979	88.533
24 × 18	$23-1/2 \times 17-1/2$	411.250	10495.441	1199.479	99.957
24 × 20	$23-1/2 \times 19-1/2$	458.250	14520.797	1489.313	111.380
24 × 22	$23-1/2 \times 21-1/2$	505.250	19462.648	1810.479	122.804
24 × 24	$23-1/2 \times 23-1/2$ $23-1/2 \times 23-1/2$	552.250	25415.004	2162.979	134.227

$$I_{X-X} = \frac{bd^3}{12} = \frac{(5.5)(11.5)^3}{12} = 697 \text{ pulg}^4 \left[285 \times 10^6 \text{ mm}^4\right]$$

En la tabla 5.1 se muestra el momento de inercia de varias dimensiones estándares efectivas para madera estructural y, de este modo, no es necesario resolver esta fórmula. En relación con la tabla, se debe empezar por la línea con la dimensión nominal 6×12 y leer 697.068 en la cuarta columna. Aunque los valores que se dan en la tabla tienen sólo tres cifras decimales, por lo general con los primeros tres dígitos se tiene toda la precisión necesaria para la mayoría de los cálculos estructurales.

Si esta viga de 6×12 se usa con el lado de 12 pulgadas en sentido horizontal, I_{X-X} se calcula mediante b=11.5 y d=5.5, y se obtiene el valor dado en la tabla para el tamaño nominal de 12×6 . El diagrama de referencia en la parte superior de la tabla indica el uso constante de las dimensiones designadas como b y d.

Secciones circulares

El momento de inercia de una sección transversal circular, como la de un poste o el de un pilote de cimentación, es el mismo con respecto a cualquier eje que pase por su centroide. La fórmula para esta condición es $I_{X-X} = \pi d^4/64$. Debido a que el eje X-X en la figura 5.2c puede ser cualquier eje que pase por su centroide, se acostumbra usar el símbolo I_0 . Entonces, si el diámetro real del miembro es 10 pulgadas [250 mm],

$$I_0 = \frac{\pi d^4}{64} = \frac{3.1416 (10)^4}{64} = 491 \text{ pulg}^4 [192 \times 10^6 \text{ mm}^4]$$

5.4 TRANSFERENCIA DE MOMENTOS DE INERCIA A EJES PARALELOS

En el diseño de vigas compuestas se necesita determinar el momento de inercia de la sección transversal total. En la figura 5.3a se muestra un tipo de sección transversal para elementos compuestos de esta clase. Para lograr esto, se deben transferir los momentos de inercia de un eje a otro, mediante la ecuación de transferencia de ejes, algunas veces llamada fórmula de transferencia o fórmula de ejes paralelos. Se le define así: el momento de inercia de una sección con respecto a cualquier eje paralelo a un eje que pasa por su propio centroide es igual al momento de inercia de la sección con respecto a su propio eje de gravedad (centroidal), más su área multiplicada por el cuadrado de la distancia perpendicular entre los dos ejes. Su expresión matemática es:

$$I = I_0 + Az^2$$

En esta fórmula

I = momento de inercia de la sección con respecto al eje dado,

 I_0 = momento de inercia de la sección con respecto a su propio eje de gravedad (centroidal) paralelo al eje dado,

A =área de la sección,

z = distancia entre los dos ejes paralelos.

Ejemplo. Una viga compuesta del tipo que se muestra en la figura 5.3a tiene un peralte total de 32 pulgadas (812 mm) y patines que constan de dos elementos de madera de 8×6 (190 \times 140 mm). Con la fórmula de transferencia, calcule el momento de inercia de los elementos de madera del patín con respecto al eje centroidal X–X.

Solución: 1) La figura 5.3b se construye a partir de los datos dados. Por simetría, el eje centroidal se encuentra en la mitad del peralte, a 16 pulgadas (406 mm), desde la cara superior.

- 2) El eje de gravedad de cada pieza de 8×6 se ubica en su centro, con z = 16 2.75 = 13.25 pulgadas (336 mm).
- 3) De la tabla 5.1, I_0 para una pieza de 8×6 es 104 pulg⁴ (43.45×10^6 mm⁴) y su área es A = 41.25 pulg² (26.6×10^3 mm²)
- 4) Al sustituir en la fórmula de transferencia, el momento de inercia de una de las piezas de 8×6 es

$$I_X = I_0 + Az^2 = 104 + (41.25 \times 13.25^2)$$

= 7 346 pulg⁴ (3 × 10⁹ mm⁴)

5) El momento de inercia del patín inferior también es 7 346 pulg⁴, por lo que el I_X total para ambas piezas es igual a 2 × 7 346 = 14 692 pulg⁴.

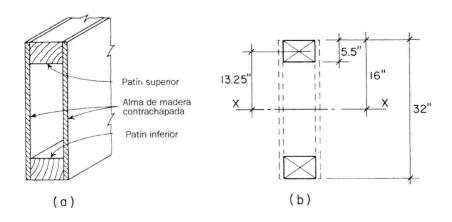


Figura 5.3

5.5 MÓDULO DE LA SECCIÓN

Una de las propiedades de las secciones que utiliza el ingeniero estructurista se conoce como *módulo de la sección*. Su uso en el diseño de vigas se explica posteriormente (capítulos 6 a 9); en este momento, sólo es necesario saber que si I es el momento de inercia de una sección con respecto a un eje que pasa por el centroide y c es la distancia desde la orilla más alejada de la sección hasta el mismo eje, el módulo de la sección es igual a I/c. La letra S se usa para denotar el módulo de la sección. Debido a que I está en pulgadas a la cuarta potencia (pulg⁴) y c es una dimensión lineal en pulgadas, el módulo de la sección S = I/c está en pulgadas a la tercera potencia (pulg³).

Para la sección transversal de la viga rectangular que se muestra en la figura 5.2a, b es el ancho de la sección y d el peralte. La distancia desde la orilla más alejada hasta el eje X–X es c = d/2. Se sabe que I_{X-X} para la sección es $bd^3/12$. Por lo tanto, el módulo de la sección es

$$S = \frac{I}{c} = \frac{bd^3}{12} \div \frac{d}{2} = \frac{bd^3}{12} \times \frac{2}{d}$$
 obien $S = \frac{bd^2}{6}$

Rara vez es necesario resolver esta fórmula porque se dispone de extensas tablas que proporcionan el módulo de la sección para diversas formas estructurales (véase la tabla 5.1.)

Ejemplo. Calcule el módulo de la sección de una viga de 8×10 con respecto a un eje que pasa por el centroide y es paralelo al lado más corto.

Solución: al consultar la tabla 5.1, se encuentra que las dimensiones efectivas de este miembro son 7.5 por 9.5 pulgadas. El módulo de la sección se encuentra en la cuarta columna como 112.8 pulg³. Al verificar este valor,

$$S = \frac{bd^2}{6} = \frac{7.5 \times 9.5 \times 9.5}{6} = 112.8 \text{ pulg}^3$$

5.6 RADIO DE GIRO

Esta propiedad de la sección transversal de un miembro estructural está relacionada con el diseño de miembros sujetos a compresión. Depende de las dimensiones y de la forma geométrica de la sección y es un índice de la rigidez de la sección cuando se usa como columna o codal. El radio de giro se define matemáticamente como $r = \sqrt{I/A}$, donde I es el momento de inercia y A el área de la sección. Se expresa en pulgadas porque el momento de inercia está en pulgadas a la cuarta potencia y el área de la sección transversal está en pulgadas cuadradas. El radio de giro no se usa tan ampliamente en el diseño de madera estructural como en el diseño de acero estructural. Para las secciones

rectangulares que se emplean comúnmente en las columnas de madera, es más conveniente substituir el radio de giro por la dimensión lateral mínima en los procedimientos de diseño de columnas.

(Nota: use dimensiones efectivas estándar en la solución de los problemas siguientes, a menos que se especifique otra cosa.)

Problema 5.6.A

Verifique el cálculo del valor listado en la tabla 5.1 para obtener el momento de inercia de un tablón de 12×4 con respecto a un eje horizontal que pasa por el centroide, paralelo al lado más largo.

Problema 5.6.B

Si se hace girar al tablón del problema 5.6 A alrededor de su eje longitudinal (para que quede como uno de 4×12), i cuál es el momento de inercia con respecto al eje centroidal paralelo al lado más corto?

Problema 5.6.C

Calcule el momento de inercia de un poste con un diámetro real de 8 pulgadas, con respecto al eje centroidal de su sección transversal circular. &Es esto mayor o menor que el $I_{X imes X}$ de un pie derecho de 8×8 nominal?

Problema 5.6.D

Si los elementos de madera del patín en una viga compuesta de madera y madera contrachapada (figura 5.3b), constan de piezas de 6×4 con los lados de 6 pulgadas horizontales y si la viga tiene un peralte total de 24 pulgadas, determine el momento de inercia de los elementos del patín con respecto al eje centroidal X-X de la sección compuesta.

Problema 5.6.E

Verifique por medio del cálculo el valor listado en la tabla 5.1 para obtener el módulo de la sección de un miembro de 10×8 con respecto a un eje que pasa por el centroide, paralelo al lado más largo.

Problema 5.6.F

Obtenga el radio de giro del poste descrito en el problema 5.6.C.

5.7 PROPIEDADES DE LAS FORMAS GEOMÉTRICAS COMUNES

Las figuras que constan de secciones transversales de madera estándar o productos manufacturados, están identificadas y sus propiedades están tabuladas

en diversos textos de consulta sobre diseño. Cuando se producen figuras especiales cortando productos estándar o al ensamblar secciones con piezas individuales, se deben determinar sus propiedades por medio del cálculo, como se explica en este capítulo. Para este fin, es necesario usar frecuentemente las propiedades de figuras geométricas simples, como el círculo, rectángulo y triángulo. En la figura 5.4 se dan las propiedades de algunas figuras geométricas comunes.

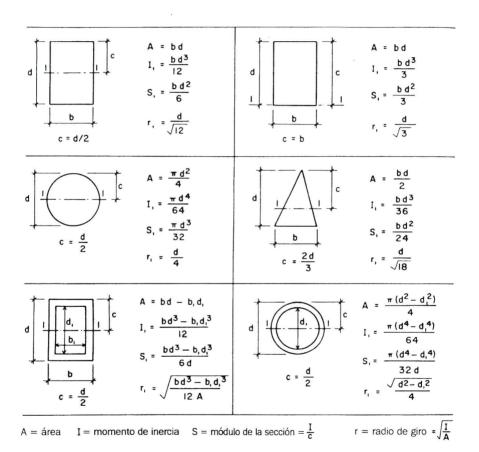


Figura 5.4 Propiedades de figuras geométricas comunes.